Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Nat Commun ; 15(1): 2880, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570504

RESUMO

Deciphering the relationship between a gene and its genomic context is fundamental to understanding and engineering biological systems. Machine learning has shown promise in learning latent relationships underlying the sequence-structure-function paradigm from massive protein sequence datasets. However, to date, limited attempts have been made in extending this continuum to include higher order genomic context information. Evolutionary processes dictate the specificity of genomic contexts in which a gene is found across phylogenetic distances, and these emergent genomic patterns can be leveraged to uncover functional relationships between gene products. Here, we train a genomic language model (gLM) on millions of metagenomic scaffolds to learn the latent functional and regulatory relationships between genes. gLM learns contextualized protein embeddings that capture the genomic context as well as the protein sequence itself, and encode biologically meaningful and functionally relevant information (e.g. enzymatic function, taxonomy). Our analysis of the attention patterns demonstrates that gLM is learning co-regulated functional modules (i.e. operons). Our findings illustrate that gLM's unsupervised deep learning of the metagenomic corpus is an effective and promising approach to encode functional semantics and regulatory syntax of genes in their genomic contexts and uncover complex relationships between genes in a genomic region.


Assuntos
Aprendizado de Máquina , Semântica , Filogenia , Óperon , Proteínas , Metagenômica
2.
bioRxiv ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38496615

RESUMO

De novo design of complex protein folds using solely computational means remains a significant challenge. Here, we use a robust deep learning pipeline to design complex folds and soluble analogues of integral membrane proteins. Unique membrane topologies, such as those from GPCRs, are not found in the soluble proteome and we demonstrate that their structural features can be recapitulated in solution. Biophysical analyses reveal high thermal stability of the designs and experimental structures show remarkable design accuracy. The soluble analogues were functionalized with native structural motifs, standing as a proof-of-concept for bringing membrane protein functions to the soluble proteome, potentially enabling new approaches in drug discovery. In summary, we designed complex protein topologies and enriched them with functionalities from membrane proteins, with high experimental success rates, leading to a de facto expansion of the functional soluble fold space.

3.
Cell ; 187(4): 999-1010.e15, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325366

RESUMO

Protein structures are essential to understanding cellular processes in molecular detail. While advances in artificial intelligence revealed the tertiary structure of proteins at scale, their quaternary structure remains mostly unknown. We devise a scalable strategy based on AlphaFold2 to predict homo-oligomeric assemblies across four proteomes spanning the tree of life. Our results suggest that approximately 45% of an archaeal proteome and a bacterial proteome and 20% of two eukaryotic proteomes form homomers. Our predictions accurately capture protein homo-oligomerization, recapitulate megadalton complexes, and unveil hundreds of homo-oligomer types, including three confirmed experimentally by structure determination. Integrating these datasets with omics information suggests that a majority of known protein complexes are symmetric. Finally, these datasets provide a structural context for interpreting disease mutations and reveal coiled-coil regions as major enablers of quaternary structure evolution in human. Our strategy is applicable to any organism and provides a comprehensive view of homo-oligomerization in proteomes.


Assuntos
Inteligência Artificial , Proteínas , Proteoma , Humanos , Proteínas/química , Proteínas/genética , Archaea/química , Archaea/genética , Eucariotos/química , Eucariotos/genética , Bactérias/química , Bactérias/genética
4.
Nature ; 625(7996): 832-839, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37956700

RESUMO

AlphaFold2 (ref. 1) has revolutionized structural biology by accurately predicting single structures of proteins. However, a protein's biological function often depends on multiple conformational substates2, and disease-causing point mutations often cause population changes within these substates3,4. We demonstrate that clustering a multiple-sequence alignment by sequence similarity enables AlphaFold2 to sample alternative states of known metamorphic proteins with high confidence. Using this method, named AF-Cluster, we investigated the evolutionary distribution of predicted structures for the metamorphic protein KaiB5 and found that predictions of both conformations were distributed in clusters across the KaiB family. We used nuclear magnetic resonance spectroscopy to confirm an AF-Cluster prediction: a cyanobacteria KaiB variant is stabilized in the opposite state compared with the more widely studied variant. To test AF-Cluster's sensitivity to point mutations, we designed and experimentally verified a set of three mutations predicted to flip KaiB from Rhodobacter sphaeroides from the ground to the fold-switched state. Finally, screening for alternative states in protein families without known fold switching identified a putative alternative state for the oxidoreductase Mpt53 in Mycobacterium tuberculosis. Further development of such bioinformatic methods in tandem with experiments will probably have a considerable impact on predicting protein energy landscapes, essential for illuminating biological function.


Assuntos
Análise por Conglomerados , Aprendizado de Máquina , Conformação Proteica , Dobramento de Proteína , Proteínas , Alinhamento de Sequência , Mutação , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Rhodobacter sphaeroides , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo
5.
Nucleic Acids Res ; 52(D1): D502-D512, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37811892

RESUMO

The Novel Metagenome Protein Families Database (NMPFamsDB) is a database of metagenome- and metatranscriptome-derived protein families, whose members have no hits to proteins of reference genomes or Pfam domains. Each protein family is accompanied by multiple sequence alignments, Hidden Markov Models, taxonomic information, ecosystem and geolocation metadata, sequence and structure predictions, as well as 3D structure models predicted with AlphaFold2. In its current version, NMPFamsDB hosts over 100 000 protein families, each with at least 100 members. The reported protein families significantly expand (more than double) the number of known protein sequence clusters from reference genomes and reveal new insights into their habitat distribution, origins, functions and taxonomy. We expect NMPFamsDB to be a valuable resource for microbial proteome-wide analyses and for further discovery and characterization of novel functions. NMPFamsDB is publicly available in http://www.nmpfamsdb.org/ or https://bib.fleming.gr/NMPFamsDB.


Assuntos
Bases de Dados de Proteínas , Metagenoma , Proteínas , Sequência de Aminoácidos , Bases de Dados Factuais , Ecossistema , Proteínas/química , Geografia
6.
Nature ; 622(7983): 594-602, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37821698

RESUMO

Metagenomes encode an enormous diversity of proteins, reflecting a multiplicity of functions and activities1,2. Exploration of this vast sequence space has been limited to a comparative analysis against reference microbial genomes and protein families derived from those genomes. Here, to examine the scale of yet untapped functional diversity beyond what is currently possible through the lens of reference genomes, we develop a computational approach to generate reference-free protein families from the sequence space in metagenomes. We analyse 26,931 metagenomes and identify 1.17 billion protein sequences longer than 35 amino acids with no similarity to any sequences from 102,491 reference genomes or the Pfam database3. Using massively parallel graph-based clustering, we group these proteins into 106,198 novel sequence clusters with more than 100 members, doubling the number of protein families obtained from the reference genomes clustered using the same approach. We annotate these families on the basis of their taxonomic, habitat, geographical and gene neighbourhood distributions and, where sufficient sequence diversity is available, predict protein three-dimensional models, revealing novel structures. Overall, our results uncover an enormously diverse functional space, highlighting the importance of further exploring the microbial functional dark matter.


Assuntos
Metagenoma , Metagenômica , Microbiologia , Proteínas , Análise por Conglomerados , Metagenoma/genética , Metagenômica/métodos , Proteínas/química , Proteínas/classificação , Proteínas/genética , Bases de Dados de Proteínas , Conformação Proteica
7.
Materials (Basel) ; 16(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37444953

RESUMO

The physics of high-Tc superconducting cuprates is obscured by the effect of strong electronic correlations. One way to overcome this problem is to seek an exact solution at least within a small cluster and expand it to the whole crystal. Such an approach is at the heart of cluster perturbation theory (CPT). Here, we developed CPT for the dynamic spin and charge susceptibilities (spin-CPT and charge-CPT), with the correlation effects explicitly taken into account by the exact diagonalization. We applied spin-CPT and charge-CPT to the effective two-band Hubbard model for the cuprates obtained from the three-band Emery model and calculated one- and two-particle correlation functions, namely, a spectral function and spin and charge susceptibilities. The doping dependence of the spin susceptibility was studied within spin-CPT and CPT-RPA, that is, the CPT generalization of the random phase approximation (RPA). In the underdoped region, both our methods resulted in the signatures of the upper branch of the spin excitation dispersion with the lowest excitation energy at the (π,π) wave vector and no presence of low-energy incommensurate excitations. In the high doping region, both methods produced a low energy response at four incommensurate wave vectors in qualitative agreement with the results of the inelastic neutron scattering experiments on overdoped cuprates.

8.
Nature ; 620(7976): 1089-1100, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37433327

RESUMO

There has been considerable recent progress in designing new proteins using deep-learning methods1-9. Despite this progress, a general deep-learning framework for protein design that enables solution of a wide range of design challenges, including de novo binder design and design of higher-order symmetric architectures, has yet to be described. Diffusion models10,11 have had considerable success in image and language generative modelling but limited success when applied to protein modelling, probably due to the complexity of protein backbone geometry and sequence-structure relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks, we obtain a generative model of protein backbones that achieves outstanding performance on unconditional and topology-constrained protein monomer design, protein binder design, symmetric oligomer design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic and metal-binding protein design. We demonstrate the power and generality of the method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing the structures and functions of hundreds of designed symmetric assemblies, metal-binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the cryogenic electron microscopy structure of a designed binder in complex with influenza haemagglutinin that is nearly identical to the design model. In a manner analogous to networks that produce images from user-specified inputs, RFdiffusion enables the design of diverse functional proteins from simple molecular specifications.


Assuntos
Aprendizado Profundo , Proteínas , Domínio Catalítico , Microscopia Crioeletrônica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/ultraestrutura , Ligação Proteica , Proteínas/química , Proteínas/metabolismo , Proteínas/ultraestrutura
9.
Nature ; 620(7973): 434-444, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37468638

RESUMO

Advances in DNA sequencing and machine learning are providing insights into protein sequences and structures on an enormous scale1. However, the energetics driving folding are invisible in these structures and remain largely unknown2. The hidden thermodynamics of folding can drive disease3,4, shape protein evolution5-7 and guide protein engineering8-10, and new approaches are needed to reveal these thermodynamics for every sequence and structure. Here we present cDNA display proteolysis, a method for measuring thermodynamic folding stability for up to 900,000 protein domains in a one-week experiment. From 1.8 million measurements in total, we curated a set of around 776,000 high-quality folding stabilities covering all single amino acid variants and selected double mutants of 331 natural and 148 de novo designed protein domains 40-72 amino acids in length. Using this extensive dataset, we quantified (1) environmental factors influencing amino acid fitness, (2) thermodynamic couplings (including unexpected interactions) between protein sites, and (3) the global divergence between evolutionary amino acid usage and protein folding stability. We also examined how our approach could identify stability determinants in designed proteins and evaluate design methods. The cDNA display proteolysis method is fast, accurate and uniquely scalable, and promises to reveal the quantitative rules for how amino acid sequences encode folding stability.


Assuntos
Biologia , Engenharia de Proteínas , Dobramento de Proteína , Proteínas , Aminoácidos/genética , Aminoácidos/metabolismo , Biologia/métodos , DNA Complementar/genética , Estabilidade Proteica , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Termodinâmica , Proteólise , Engenharia de Proteínas/métodos , Domínios Proteicos/genética , Mutação
10.
bioRxiv ; 2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36865323

RESUMO

Deep learning networks offer considerable opportunities for accurate structure prediction and design of biomolecules. While cyclic peptides have gained significant traction as a therapeutic modality, developing deep learning methods for designing such peptides has been slow, mostly due to the small number of available structures for molecules in this size range. Here, we report approaches to modify the AlphaFold network for accurate structure prediction and design of cyclic peptides. Our results show this approach can accurately predict the structures of native cyclic peptides from a single sequence, with 36 out of 49 cases predicted with high confidence (pLDDT > 0.85) matching the native structure with root mean squared deviation (RMSD) less than 1.5 Å. Further extending our approach, we describe computational methods for designing sequences of peptide backbones generated by other backbone sampling methods and for de novo design of new macrocyclic peptides. We extensively sampled the structural diversity of cyclic peptides between 7-13 amino acids, and identified around 10,000 unique design candidates predicted to fold into the designed structures with high confidence. X-ray crystal structures for seven sequences with diverse sizes and structures designed by our approach match very closely with the design models (root mean squared deviation < 1.0 Å), highlighting the atomic level accuracy in our approach. The computational methods and scaffolds developed here provide the basis for custom-designing peptides for targeted therapeutic applications.

11.
Front Bioinform ; 3: 1157956, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36959975

RESUMO

Metagenomics has enabled accessing the genetic repertoire of natural microbial communities. Metagenome shotgun sequencing has become the method of choice for studying and classifying microorganisms from various environments. To this end, several methods have been developed to process and analyze the sequence data from raw reads to end-products such as predicted protein sequences or families. In this article, we provide a thorough review to simplify such processes and discuss the alternative methodologies that can be followed in order to explore biodiversity at the protein family level. We provide details for analysis tools and we comment on their scalability as well as their advantages and disadvantages. Finally, we report the available data repositories and recommend various approaches for protein family annotation related to phylogenetic distribution, structure prediction and metadata enrichment.

12.
Proc Natl Acad Sci U S A ; 120(11): e2207974120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36897987

RESUMO

Small beta barrel proteins are attractive targets for computational design because of their considerable functional diversity despite their very small size (<70 amino acids). However, there are considerable challenges to designing such structures, and there has been little success thus far. Because of the small size, the hydrophobic core stabilizing the fold is necessarily very small, and the conformational strain of barrel closure can oppose folding; also intermolecular aggregation through free beta strand edges can compete with proper monomer folding. Here, we explore the de novo design of small beta barrel topologies using both Rosetta energy-based methods and deep learning approaches to design four small beta barrel folds: Src homology 3 (SH3) and oligonucleotide/oligosaccharide-binding (OB) topologies found in nature and five and six up-and-down-stranded barrels rarely if ever seen in nature. Both approaches yielded successful designs with high thermal stability and experimentally determined structures with less than 2.4 Å rmsd from the designed models. Using deep learning for backbone generation and Rosetta for sequence design yielded higher design success rates and increased structural diversity than Rosetta alone. The ability to design a large and structurally diverse set of small beta barrel proteins greatly increases the protein shape space available for designing binders to protein targets of interest.


Assuntos
Aminoácidos , Proteínas , Estrutura Secundária de Proteína , Modelos Moleculares , Proteínas/química , Conformação Proteica em Folha beta , Dobramento de Proteína
13.
Nat Chem Biol ; 19(5): 548-555, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36593274

RESUMO

Metal ions have various important biological roles in proteins, including structural maintenance, molecular recognition and catalysis. Previous methods of predicting metal-binding sites in proteomes were based on either sequence or structural motifs. Here we developed a co-evolution-based pipeline named 'MetalNet' to systematically predict metal-binding sites in proteomes. We applied MetalNet to proteomes of four representative prokaryotic species and predicted 4,849 potential metalloproteins, which substantially expands the currently annotated metalloproteomes. We biochemically and structurally validated previously unannotated metal-binding sites in several proteins, including apo-citrate lyase phosphoribosyl-dephospho-CoA transferase citX, an Escherichia coli enzyme lacking structural or sequence homology to any known metalloprotein (Protein Data Bank (PDB) codes: 7DCM and 7DCN ). MetalNet also successfully recapitulated all known zinc-binding sites from the human spliceosome complex. The pipeline of MetalNet provides a unique and enabling tool for interrogating the hidden metalloproteome and studying metal biology.


Assuntos
Metaloproteínas , Proteoma , Humanos , Sequência de Aminoácidos , Proteoma/química , Metais/metabolismo , Metaloproteínas/metabolismo , Sítios de Ligação , Escherichia coli/metabolismo , Aprendizado de Máquina
14.
Nat Struct Mol Biol ; 30(1): 72-80, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36593311

RESUMO

Cyclic GMP-AMP synthase (cGAS) is a pattern recognition receptor critical for the innate immune response to intracellular pathogens, DNA damage, tumorigenesis and senescence. Binding to double-stranded DNA (dsDNA) induces conformational changes in cGAS that activate the enzyme to produce 2'-3' cyclic GMP-AMP (cGAMP), a second messenger that initiates a potent interferon (IFN) response through its receptor, STING. Here, we combined two-state computational design with informatics-guided design to create constitutively active, dsDNA ligand-independent cGAS (CA-cGAS). We identified CA-cGAS mutants with IFN-stimulating activity approaching that of dsDNA-stimulated wild-type cGAS. DNA-independent adoption of the active conformation was directly confirmed by X-ray crystallography. In vivo expression of CA-cGAS in tumor cells resulted in STING-dependent tumor regression, demonstrating that the designed proteins have therapeutically relevant biological activity. Our work provides a general framework for stabilizing active conformations of enzymes and provides CA-cGAS variants that could be useful as genetically encoded adjuvants and tools for understanding inflammatory diseases.


Assuntos
Imunidade Inata , Nucleotidiltransferases , Nucleotidiltransferases/metabolismo , DNA/química
15.
Materials (Basel) ; 16(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36676396

RESUMO

CuO atomic thin monolayer (mlCuO) was synthesized recently. Interest in the mlCuO is based on its close relation to CuO2 layers in typical high temperature cuprate superconductors. Here, we present the calculation of the band structure, the density of states and the Fermi surface of the flat mlCuO as well as the corrugated mlCuO within the density functional theory (DFT) in the generalized gradient approximation (GGA). In the flat mlCuO, the Cu-3dx2-y2 band crosses the Fermi level, while the Cu-3dxz,yz hybridized band is located just below it. The corrugation leads to a significant shift of the Cu-3dxz,yz hybridized band down in energy and a degeneracy lifting for the Cu-3dx2-y2 bands. Corrugated mlCuO is more energetically favorable than the flat one. In addition, we compared the electronic structure of the considered CuO monolayers with bulk CuO systems. We also investigated the influence of a crystal lattice strain (which might occur on some interfaces) on the electronic structure of both mlCuO and determined the critical strains of topological Lifshitz transitions. Finally, we proposed a number of different minimal models for the flat and the corrugated mlCuO using projections onto different Wannier functions basis sets and obtained the corresponding Hamiltonian matrix elements in a real space.

16.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36355460

RESUMO

MOTIVATION: Multiple sequence alignments (MSAs) of homologous sequences contain information on structural and functional constraints and their evolutionary histories. Despite their importance for many downstream tasks, such as structure prediction, MSA generation is often treated as a separate pre-processing step, without any guidance from the application it will be used for. RESULTS: Here, we implement a smooth and differentiable version of the Smith-Waterman pairwise alignment algorithm that enables jointly learning an MSA and a downstream machine learning system in an end-to-end fashion. To demonstrate its utility, we introduce SMURF (Smooth Markov Unaligned Random Field), a new method that jointly learns an alignment and the parameters of a Markov Random Field for unsupervised contact prediction. We find that SMURF learns MSAs that mildly improve contact prediction on a diverse set of protein and RNA families. As a proof of concept, we demonstrate that by connecting our differentiable alignment module to AlphaFold2 and maximizing predicted confidence, we can learn MSAs that improve structure predictions over the initial MSAs. Interestingly, the alignments that improve AlphaFold predictions are self-inconsistent and can be viewed as adversarial. This work highlights the potential of differentiable dynamic programming to improve neural network pipelines that rely on an alignment and the potential dangers of optimizing predictions of protein sequences with methods that are not fully understood. AVAILABILITY AND IMPLEMENTATION: Our code and examples are available at: https://github.com/spetti/SMURF. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Proteínas , Humanos , Alinhamento de Sequência , Proteínas/química , Redes Neurais de Computação , Sequência de Aminoácidos
17.
Phys Rev Lett ; 129(23): 238101, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563190

RESUMO

The problem of predicting a protein's 3D structure from its primary amino acid sequence is a longstanding challenge in structural biology. Recently, approaches like alphafold have achieved remarkable performance on this task by combining deep learning techniques with coevolutionary data from multiple sequence alignments of related protein sequences. The use of coevolutionary information is critical to these models' accuracy, and without it their predictive performance drops considerably. In living cells, however, the 3D structure of a protein is fully determined by its primary sequence and the biophysical laws that cause it to fold into a low-energy configuration. Thus, it should be possible to predict a protein's structure from only its primary sequence by learning an approximate biophysical energy function. We provide evidence that alphafold has learned such an energy function, and uses coevolution data to solve the global search problem of finding a low-energy conformation. We demonstrate that alphafold'slearned energy function can be used to rank the quality of candidate protein structures with state-of-the-art accuracy, without using any coevolution data. Finally, we explore several applications of this energy function, including the prediction of protein structures without multiple sequence alignments.


Assuntos
Algoritmos , Proteínas , Conformação Proteica , Modelos Moleculares , Proteínas/química , Sequência de Aminoácidos
18.
Nat Struct Mol Biol ; 29(11): 1056-1067, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36344848

RESUMO

Most proteins fold into 3D structures that determine how they function and orchestrate the biological processes of the cell. Recent developments in computational methods for protein structure predictions have reached the accuracy of experimentally determined models. Although this has been independently verified, the implementation of these methods across structural-biology applications remains to be tested. Here, we evaluate the use of AlphaFold2 (AF2) predictions in the study of characteristic structural elements; the impact of missense variants; function and ligand binding site predictions; modeling of interactions; and modeling of experimental structural data. For 11 proteomes, an average of 25% additional residues can be confidently modeled when compared with homology modeling, identifying structural features rarely seen in the Protein Data Bank. AF2-based predictions of protein disorder and complexes surpass dedicated tools, and AF2 models can be used across diverse applications equally well compared with experimentally determined structures, when the confidence metrics are critically considered. In summary, we find that these advances are likely to have a transformative impact in structural biology and broader life-science research.


Assuntos
Biologia Computacional , Furilfuramida , Biologia Computacional/métodos , Sítios de Ligação , Proteínas/química , Bases de Dados de Proteínas , Conformação Proteica
19.
Inorg Chem ; 61(33): 13034-13046, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35947773

RESUMO

A tetravalent-substituted cobalt ludwigite Co2.5Ge0.5BO5 has been synthesized using the flux method. The compound undergoes two magnetic transitions: a long-range antiferromagnetic transition at TN1 = 84 K and a metamagnetic one at TN2 = 36 K. The sample-oriented magnetization measurements revealed a fully compensated magnetic moment along the a- and c-axes and an uncompensated one along the b-axis leading to high uniaxial anisotropy. A field-induced enhancement of the ferromagnetic correlations at TN2 is observed in specific heat measurements. The DFT+GGA calculation predicts the spin configuration of (↑↓↓↑) as a ground state with a magnetic moment of 1.37 µB/f.u. The strong hybridization of Ge(4s, 4p) with O (2p) orbitals resulting from the high electronegativity of Ge4+ is assumed to cause an increase in the interlayer interaction, contributing to the long-range magnetic order. The effect of two super-superexchange pathways Co2+-O-B-O-Co2+ and Co2+-O-M4-O-Co2+ on the magnetic state is discussed.

20.
Materials (Basel) ; 15(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35806706

RESUMO

Electronic structure and magnetic properties of Fe3Se4 are calculated using the density functional approach. Due to the metallic properties, magnetic moments of the iron atoms in two nonequivalent positions in the unit cell are different from ionic values for Fe3+ and Fe2+ and are equal to M1=2.071µB and M2=-2.042µB, making the system ferrimagnetic. The total magnetic moment for the unit cell is 2.135µB. Under isotropic compression, the total magnetic moment decreases non-monotonically and correlates with the non-monotonic dependence of the density of states at the Fermi level N(EF). For 7% compression, the magnetic order changes from the ferrimagnetic to the ferromagnetic. At 14% compression, the magnetic order disappears and the total magnetic moment becomes zero, leaving the system in a paramagnetic state. This compression corresponds to the pressure of 114 GPa. The magnetic ordering changes faster upon application of an isotropic external pressure due to the sizeable anisotropy of the chemical bondings in Fe3Se4. The ferrimagnetic and paramagnetic states occur under pressures of 5.0 and 8.0 GPa, respectively. The system remains in the metallic state for all values of compression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA